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Abstract Business processmanagement (BPM) is an acknowl-
edged source of corporate performance. Despite the mature
body of knowledge, computational support is considered as a
highly relevant research gap for redesigning business processes.
Therefore, this paper applies Evolutionary Algorithms (EAs)
that, on a conceptual level, mimic the BPM lifecycle – the most
popular BPM approach – by incrementally improving the status
quo and bridging the trade-off between maintaining well-
performing design structures and continuously evolving new
designs. Beginning with describing process elements and their
characteristics in matrices to aggregate process information, the
EA then processes this information and combines the elements
to new designs. These designs are then assessed by a function
from value-based management. This economic paradigm re-
duces designs to their value contributions and facilitates an ob-
jective prioritization. Altogether, our triad of management sci-
ence, BPM and information systems research results in a prom-
ising tool for process redesign and avoids subjective vagueness
inherent to current redesign projects.
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1 Introduction

Process orientation is an accepted paradigm of organizational
design with a proven impact on corporate performance
(Kohlbacher and Reijers 2013). An essential management task
that organizations have to continuously execute when sub-
scribing themselves to this proven paradigm is process
redesign. It aims at increasing effectiveness and efficiency
of processes by adapting the actual process design to
changes in the organizational environment. Thereby, the
interpretation of the term process design varies with respect
to the level of abstraction. It ranges from a very high-level
interpretation as an operational sequence description of exe-
cuted activities and their chronological order to a very detailed
interpretation as a process model which considers every pos-
sibility that may affect the way of how work is performed.
This paper follows an in-between interpretation of a process
blue-print and define a process design as a description of
activities, their chronological and their logical order. As pro-
cess redesign is often considered as the most value-creating
activity within BPM (Dumas et al. 2013; Zellner 2011), ex-
tensions of the scientific and practical tool-kit for such rede-
signs are still in high demand (van der Aalst 2013). Although
the constant attention from industry and academia resulted in a
plethora of mature approaches, methods, and tools (Harmon
and Wolf 2014; van der Aalst 2013; Vanwersch et al. 2016),
most redesign approaches are of qualitative nature and heavily
rely on human intuition as their source of innovation
(Hofacker and Vetschera 2001). Brainstorming sessions and
iterative discussions are the pillars of the so-called creative
redesign approach (Limam Mansar et al. 2009), although it
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is known that such discussions may bias choices and neglect
alternatives. As a consequence, practical decision-makers are
in deep need of computational support for the redesign act to
overcome the inherent subjective vagueness (Sharp and
McDermott 2008; Zellner 2011). From a scientific perspec-
tive, many scholars confirm the relevance of this research
topic and denote the lack of computational redesign support
as an important and current research gap (van der Aalst 2013;
Vergidis et al. 2008; Zellner 2011).

Considering the success of computational intelligence (CI)
in design and optimization problems from the business world,
this paradigm seems promising. The abilities to cope with
complex processes and a mass of data (gathered by workflow
management or business intelligence systems, see van der
Aalst (2013)) as well as to reduce uncertainty and subjective
vagueness underlines the attractiveness of the paradigm.
Further, applications of evolutionary algorithms (EA) as a
prominent representative of the CI-tool-kit have already
shown their potential in solving BPM problems. For example,
Low et al. (2014), Richter-Von Hagen et al. (2005), and Zhou
and Chen (2003) use EAs to assign resources to process
activities. Vergidis et al. (2012) even utilizes the power of
EAs and CI to improve process designs. However, current
works do not unfold the complete potential of EAs: Their
multi-objective perspectives lead to ambiguous solutions.
Performance issues restrict the complexity of the process
under investigation. Essential characteristics as decision
nodes and the corresponding conditions are out of scope.
This is why this paper investigates the following research
question:How can organizations leverage CI to redesign their
processes while accounting for the essential process elements?

In order to address this research question, this paper
develops an EA-application in a broader sense and trans-
lates the real-world problem of BPM to the computational
world (and back again) for solving it by CI. This allows a
dynamic design of processes and supports practitioners in
validating and evaluating design alternatives. Our application
considers the essential process elements (e.g., activities, ob-
jects and their logic connectivity), which is the key challenge
in the translating part. As research method, design science
research (DSR) paradigm is chosen as EAs fulfill the criteria
of a valid DSR artefact type (March and Smith 1995). As
justificatory knowledge, this study draws from a theoretical
triad of CI as representative of IS research, value-based man-
agement (VBM) from management sciences and BPM as an
intersecting discipline. BPM and CI provide the theoretical
foundation for our application. As the evolutionary design of
processes is a proven best practice in BPM, the transfer of the
evolutionary way to the computational level has a sound the-
oretical foundation (Dumas et al. 2013). As an acknowledged
theory for corporate and process decision-making, VBM
serves for evaluating the computed redesign alternatives
(Buhl et al. 2011; vom Brocke and Sonnenberg 2015).

Following the DSR methodology as per Peffers et al.
(2007), this study discusses the identification of and motiva-
tion for the research problem, objectives of a solution, design
and development, and evaluation. Section 2 outlines the de-
velopment of computational intelligence in BPM to position
the contribution of our work. Section 3 derives design objec-
tives from the business requirements (objectives of a solution)
and provides relevant justificatory knowledge. Section 4 out-
lines the research idea and evaluation strategy. Section 5 intro-
duces the design specification of the EA application (design
and development). Section 6 reports on our evaluation activities
(evaluation). The authors conclude in section 7 by pointing to
limitations and future research possibilities.

2 Computational intelligence in the history of BPM

BPM is an integrated system for handling organizational
performance, regulatory compliance, and service quality by
managing processes (Dumas et al. 2013; Hammer 2015).
In other words, it is Bthe art and science of overseeing
howwork is performed […] to ensure consistent outcomes and
to take advantage of improvement opportunities^ (Dumas
et al. 2013, p. 1). Thereby, it combines knowledge from com-
puter and management sciences (van der Aalst 2013).
Following the historic overview on the evolution of BPM by
van der Aalst (2013), the role of CI goes back to the process
improvement postulation in the mid-nineties (Hammer and
Champy 1993) when BPM finally found its way into informa-
tion systems (IS) research. Workflow management systems
(WFMS) became available and computational BPM primarily
focused on automation with little support regarding the analy-
sis, flexibility, and management of processes. Today, the sci-
entific lens of BPM increasingly shifts from an operational to
an analytical orientation. With a broader scientific horizon, it
now includes controlled process execution and process
redesign.

Concerning the mission of providing practical support on
redesign projects, the BPM community has produced a variety
of tools that can act as facilitators or enablers for the identifi-
cation and implementation of improved process designs.
However, there is still little support for computer-based and
automatic generation of innovative design ideas (Bernstein
et al. 2003). Scholars mainly provide qualitative techniques
such as brainstorming (Kettinger et al. 1997). Although also
more advanced techniques such as RePro begin to evolve
(Vanwersch et al. 2015), only few works respond to the need
of computational support. To list some examples: Case-based
reasoning (CBR) is a first approach leveraging computational
abilities to create new process designs by searching analo-
gies to successful redesign projects implemented in the past
(Min et al. 1996). The process recombinator tool by Bernstein
et al. (2003) proposes new process designs based on a list of
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core activities. Although providing computational support for
the construction and identification of new, promising designs,
this tool is only semi-automatic as the selection of the most
satisfactory process design is delegated to the user. The
KOPer tool by Nissen (1998) identifies problematic process
structures or fragmented process flows to find designs dealing
with these so called process pathologies. However, the prior-
itization and realization of redesigns also remains a manual
task. Limam Mansar et al. (2009) build on CBR and the
KOPer tool. They derive best practices for process redesign
and provide empirical evidence to process managers. Besides,
some applications of EAs for process redesign have emerged,
presenting EAs as a promising approach to fill the gap of auto-
mated support: Zhou and Chen (2003) and Richter-Von Hagen
et al. (2005) optimize resource assignments with regard to mul-
tiple performance objectives, whereas Richter-Von Hagen et al.
(2005) have a distinct focus on knowledge-intensive processes.
Vergidis et al. (2012) evaluate alternative process designs vary-
ing in size and activities due to their expected performance in
fulfilling multiple objectives and resulting in a set of not-
dominated designs. Low et al. (2014) use EAs to redefine
starting times of activities and reallocate resources from a
cost-based view. Although process performance is often con-
sidered from various perspectives like time, quality and costs,
the integration of this multiplicity into EAs often comes along
with performance and complexity restrictions.

Briefly, practitioners and academia have recognized the
importance of tool-support for process redesign and provide
first approaches that use artificial intelligence algorithms.
Nevertheless, we can justify applications of CI in BPM as
meaningful research problem: Although ITand computational
intelligence already find applications in the design of new
process alternatives and help to make the design process more
easily, more cost-effectively, quicker, more systematically,
and more robust against subjective vagueness, the technical
task of generating new process designs is still in its infancy
(LimamMansar et al. 2009). This paper addresses this research
gap by enhancing existing approaches by implementing addi-
tional process elements, establishing unambiguous redesign
objectives to deal with the increasing complexity of today’s
processes.

As the further development of the existing approaches intends
to design and implement a new and innovative artefact (e.g.,
models, methods, constructs, instantiations, and design theories
or in our case computational intelligence tools for process rede-
sign) (Hevner et al. 2004; March and Storey 2008), it could
follow the design science research (DSR) paradigm as theoretical
fundament (March and Storey 2008). The DSR methodology as
per Peffers et al. (2007) proceeds in six steps: identification of
and motivation for the research problem, definition of the objec-
tives of a solution, design and development, demonstration,
evaluation, and communication. As we already identified and
motivated a meaningful DSR problem, we proceed with step 2.

3 Design objectives and justificatory knowledge

In order to accomplish the second step of DSR (Peffers et al.
2007), we need to derive design objectives ((O.1) – (O.3))
from justificatory knowledge. In general, design objectives
help to assess whether an artefact properly solves the
identified research problem. As justificatory knowledge,
we refer to BPM and to VBM. As processes and their
elements are the essentials of process redesign, we define
the first design objective:

(O.1) Process Elements: To redesign processes, it is necessary
to consider the key elements of processes: activities,
connections and routing decisions.

A process is defined as a collection of inter-related events,
activities, and decision points that involve a number of actors
(or resources) and objects, and that collectively lead to an
outcome (Dumas et al. 2013). The specific order of activities
describes how the involved actors perform their activities
across time and place (Davenport 1993). Their executions
may be sequential or happen in parallel. The used objects
can be tangible (e.g., precious metals) or intangible (e.g., cus-
tomer data) goods. They serve as in- and/or output in their
original or modified forms. Each set of activities in a specific
order represents a process path. In the case of necessary dis-
tinctions, defined conditions decide on the right path (routing
decision). Summarizing, with design objective O.1, the com-
binations of activities, objects, conditions, etc. form realistic
process designs with different levels of complexity.

As the implemented design in turn influences the overall
process performance, the design candidates provide a basis for
prioritization (Limam Mansar et al. 2009). To provide con-
crete guidance for redesign initiatives and to support a clear
corporate decision-making, we define the second design
objective:

(O.2) Value-Based Management: To prioritize process rede-
sign, it is necessary to cater for cash flow effects and
the time value of money. Moreover, the involved de-
cision-makers’ risk attitude must be considered.

In the context of BPM, organizations normally use per-
formance indicators together with desired target values
(benchmarks) and admissible value ranges (Leyer et al.
2015) to assess the performance of a process. Process
performance indicators can be grouped via the Devil’s
Quadrangle, a framework comprising a time, cost, quality,
and flexibility dimension (Reijers and Limam Mansar 2005).
The Devil’s Quadrangle is so-named because improving one
dimension weakens at least one other, disclosing the trade-offs
to be resolved during redesign to prevent from ambiguous
design prioritizations each fulfilling another objective.
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To resolve the partly conflicting nature of these perfor-
mance dimensions via integrated performance indicators, pro-
cess decision-making at least devoted increasing attention to
value-based management (vom Brocke and Sonnenberg
2015). It is the guiding paradigm of corporate decision-
making in economic research and practice (Buhl et al. 2011).
VBM strives for a sustainably evolution of the firm value from
a long-term perspective (Ittner and Larcker 2001; Koller et al.
2015). Thereby, it extends the shareholder value approach
that was established by Rappaport (1986) and elaborated
by Copeland et al. (1994) as well as by Stewart and Stern
(1991). Its long-term perspective makes VBM compliant with
the more general stakeholder value approach (Danielson et al.
2008). For VBM to be completely established, all corporate
activities and decisions must be orientated at maximizing the
firm value. As key requirements – and consequently as design
objective O.2, organizations must quantify the firm value on
the aggregate level and the value contributions of individual
assets and decisions by regarding their cash flow effects, the
time value of money, and the decision-makers’ risk attitude
(Buhl et al. 2011). The valuation functions that are typically
used for this quantification purpose originate from investment
and decision theory and consider the decision situation and the
decision-makers’ risk attitude (Buhl et al. 2011; Damodaran
2012).

The most prominent methods in BPM that leverage the
essentials of VBM for solving BPM problems are goal-
oriented BPM (Neiger and Churilov 2004a), value-focused
BPM (Neiger and Churilov 2004b; Rotaru et al. 2011),
value-driven BPM (Franz et al. 2011), value-oriented BPM
(vom Brocke et al. 2010), and value-based BPM (Bolsinger
2015). Particularly, process-related decisions based on value-
oriented or value-based BPM solve the problem of the partly
conflicting, multi-objective nature of performance dimensions
by compiling it into the integrated, single-objective measure
of a process’ value contribution (Buhl et al. 2011). Both
methods also consider cash flows and the time value of
money. Whereas, value-oriented BPM has a stronger focus
on the financial perspective and the pure cash flows in
terms of the payment structure (Bolsinger 2015), value-
based BPM uses the valuation functions as analytical
lenses to compare process alternatives (Bolsinger 2015).
In line with our intention to prioritize design alternatives,
value-based BPM is qualified as guiding paradigm. Not
least, ever more approaches adopt value-based BPM to
support process design in an economically well-founded
manner while comparing design alternatives and/or proposing
improvement recommendations (Bolsinger 2015; Bolsinger
et al. 2015; vom Brocke et al. 2010). Further approaches in-
tegrate the financial and non-financial performance effects
that capture how work is organized and structured within the
central measure of process cash flows (Afflerbach et al. 2014;
Linhart et al. 2015a; Linhart et al. 2015b). As the value

contribution of processes depend on the tasks and paths in-
cluded in process models as well as on the tasks’ monetized
performance effects, methods such as that proposed by
Bolsinger (2015) help aggregate multi-dimensional task and
path characteristics to cash flows.

As the overall process performance varies over time owing
to the constantly changing environment and, consequently, the
implemented process design has to keep pace, we define the
third design objective:

(O.3) Evolutionary Redesign: Computational redesign
should follow an evolutionary logic to be in line with
known best practices and to reduce organizational
resistance.

Process redesign as the most important and valuable phase
of the BPM lifecycle (Zellner 2011) evolved as an everyday
task (Doomun and Vunka Jungum 2008). In regards to these
redesign initiatives, companies face a technical and a socio-
cultural challenge (Reijers and Limam Mansar 2005). The
technical challenge relates to the identification of new process
design or structures. Despite the methodological plethora for
process redesign, there is still less guidance and support by
means of techniques and best practices (Reijers and Limam
Mansar 2005; Sharp andMcDermott 2008; Valiris and Glykas
1999). The few existing approaches and the conditions to be
met are too complex (Limam Mansar et al. 2009). Therefore,
the tools fail to support redesign (Nissen 2000). The socio-
cultural challenge originates from the organizational effects on
the involved people. Many redesign initiatives struggle with
organizational resistance while incorporating the newly de-
signed processes into working practice (Wastell et al. 1994).
However, only the intended use that is aligned to the strategic
and operational goals of the firm may realize the value of
redesign (Agarwal and Karahanna 2000). Otherwise it is
worthless. To foster acceptance among practical decision-
makers, it is crucial that the computational support follows a
comprehensible logic in deriving new process designs. Design
objective O.3 addresses both perspectives of the socio-
economic challenge in a dynamic environment. As most ac-
cepted approach for process redesign (Dumas et al. 2013), the
BPM lifecycle and its evolutionary, incremental procedures
represent a suitable foundation for the DSR artefact.

4 Research idea and evaluation strategy

In the design and development phase of our DSR project
(cf. Peffers et al. 2007), we combine ideas from IS re-
search, management science and BPM (as the intersecting
discipline) to develop an application constructed for iden-
tifying promising redesign alternatives. BPM captures the
essentials of the research problem in terms of modelling
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the object for optimization. CI in general and EAs in
particular assist with creating new designs of the process
under investigation to provide a pool of design alternatives
for a deliberate choice (Keeney and Raiffa 2003). VBM
complements our application by providing a suitable valu-
ation function to prioritize the pre-constructed alternatives
from the EA. The fundamentals for the integration of
these diverse research directions are our programming log-
ic for transforming processes as real-world objects into
artificial, algorithmic objects and our EA customization
towards the requirements from the business side. This triad
of research disciplines is necessary as the redesign problem
per se is that complex that each discipline separately cannot
meet the underlying complexity.

When developing such a business application of CI, we
adhere to the following blue-print: We first choose the appro-
priate algorithm from the broad tool-kit of CI based on theo-
retical reasoning (sections 5.1). We then proceed with the
problem representation and bring processes to the computa-
tional level based on LISt programming (LISP) and attribute
matrices (sections 5.2). This is the key challenge of our appli-
cation as it requires the orchestration and synthesis of the three
research disciplines. Finally, we customize the EA in its core
functions: the creation of the initial population, the evaluation
of individual organisms, the selection and reproduction mech-
anisms (section 5.3). Within this section, we operationalize an
acknowledged valuation function used in VBM as fitness
function. Complying with the requirements of VBM, the fit-
ness function considers the cash flow and risk effects of a
redesign candidate, the time value of money, and the involved
decision-makers’ risk attitude.

To demonstrate and evaluate our artefact, we follow
Sonnenberg and vomBrocke’s (2012) framework of evaluation
activities in DSR. This framework considers ex-ante/ex-post
and artificial/naturalistic evaluation (Pries-Heje et al. 2008;
Venable et al. 2012). Ex-ante evaluation is conducted in
advance, ex-post evaluation after the instantiation of the
algorithm, e.g., by means of a prototypical implementation.
Naturalistic evaluation demands the judgement of the arte-
facts in real life. To validate our design specifications, we
apply an ex-post evaluation (EVAL3) that assess the use-
fulness of the artefact instantiations. We implemented the
artefact in Microsoft Excel (MS Excel) and Visual Basic
for Applications (VBA).

5 Computational process redesign

We use the concepts of CI to design an algorithm supporting
the process redesign problem. To match CI capabilities as
problem solution and BPM requirements as problem domain,
we are confronted with decisions about the appropriate algo-
rithm, about design elements and about constructional aspects

of the chosen CI algorithm (Koza 1992). Design decisions
cover requirements from the problem domain, its representa-
tion and objects for optimization, as well as the representation
of the design solutions. Constructional aspects relate to the
population concept and the evaluation of solutions.

5.1 Evaluation of an appropriate CI approach for process
redesign

CI provides a set of nature-inspired computational methodol-
ogies and approaches close to the human way of reasoning
(Rutkowski 2008; Siddique and Adeli 2013). To find an ap-
propriate support for process redesign, it is necessary to un-
derstand the evolutionary nature of processes and their man-
agement. As an intermediate step, we draw parallels to the
biological evolution (Darwin 1859; Mendel 1866) as basis
for the identification of a nature-inspired problem solution
that follows an evolutionary logic to be in line with the
well-known BPM lifecycle as problem domain and to reduce
organizational resistance (see design objective O.3).

The aim of the BPM lifecycle, which is the most prominent
redesign approach in practice, is analogous to the reproduction
cycle in nature: an improved generation of objects. Whereas
these objects are organisms (e.g., human individuals) in na-
ture, BPM operates on processes. Their appearance are their
process models and their organs are connections, activities,
and objects. The phases of the BPM lifecycle (Dumas et al.
2013), i.e., identification, discovery, analysis, redesign, and
implementation as well as monitoring and controlling, corre-
spond to the phases of the evolutionary reproduction, i.e.,
offspring, natural selection, sexual selection and reproduction
as shown in the inner part of Fig. 1. We explain the parallels
between the two concepts below:

(1) Both cycles start with an object that represents a solution
according to the respective objectives – viable organisms
or well-performing process designs where their perfor-
mances determine survivability. If distinctive character-
istics give an object an edge over competitors, it is more
likely to propagate in following generations (Darwin
1859). While in nature, an organism has to compete
with others about scarce natural resources for survival,
process designs compete in terms of effectiveness and
efficiency.

(2) Every object is constantly evaluated according to its goal
fulfillment. Vitality and fertility of sexual partners in
nature (Darwin 1859) versus performance behavior in
BPM.

(3) Reproduction (or redesign in BPM) combines or replaces
the best objects and modifies them via recombination
and mutation (Darwin 1859; Mendel 1866). While re-
combination combines the genetic material of selected
objects, mutation carries out random changes to create
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new objects. In BPM, changes in the activities and con-
nections as genetic information produce new, potentially
better performing alternatives.

(4) Both cycles result in a new generation of objects prom-
ising better adaption to the objectives. Depending on the
innovation scope, one may refer to evolution or revolu-
tion. Just like new species that may evolve in nature, the
BPM lifecycle could provide new processes or business
models as a radical improvement.

Basically, the BPM lifecycle and the evolutionary repro-
duction cycle solve an optimization problem. In doing so,
BPM as a relatively new discipline could benefit from the
experience of other disciplines and the related developments
in CI. In the set of nature-inspired computational methodolo-
gies from CI, EAs fit best the proven improvement strategy of
evolutionary principles. They draw from genetic algorithms
(Holland 1992), evolutionary strategies (Rechenberg 1973;
Schwefel 1977), evolutionary programming (Fogel et al.
1966), and genetic programming (Koza 1992) abstracting
the evolutionary reproduction cycle (Abraham 2005).
Additionally, EAs represent a suitable solution to any optimi-
zation problem in the absence of any specialized technique.
They provide flexibility, adaptability, robust performance, and
the ability to leave local optima. According to our theoretical
reasoning, we introduce the EA approach to BPM (see outer
part of Fig. 1). Thereby, the fundamental procedure of the EA
is similar to the simplified procedure of the BPM lifecycle –
even though the EA actually only supports the one phase of
process redesign in the BPM lifecycle.

Beginning with a population of known and randomly gen-
erated objects, EAs select the best objects as Bparents^ for the
next generations. Then, the EA recombines and mutates the
selected objects following the evolutionary principles. The
best objects are identified by the so called fitness function
which measures the alignment of the selected objects to the
overall objectives. The cycle repeats until a predefined termi-
nation and, then, returns the solutions with the highest objec-
tive value. Compared to the traditional BPM lifecycle, EAs
are able to simulate many evolutionary steps at once, they are
less risky and are not prone to subjective biases. Not least, first
approaches in the context of BPM (Low et al. 2014; Richter-
Von Hagen et al. 2005; Vergidis et al. 2012; Zhou and Chen
2003) gathered initial experience in designing the problem
space and applying the mechanisms of selection, recombina-
tion, and mutation. Besides the theoretical parallels, the struc-
tural similarities of the evolutionary concepts promise to foster
acceptance among practical decision-makers (see design ob-
jective O.3). Overall, we can conclude that EAs are suitable
for answering the research question as they have a reasonable,
theoretical underpinning for solving the redesign problem and
as they are in line with our design objectives.

5.2 Translating from real-world to computational world

To provide a better understanding of the design decisions –
and the constructional aspects in section 5.3 – we briefly in-
troduce an example process.We refer to this process whenever
necessary and use it for evaluation purposes in section 6.2.
The example is inspired by Vergidis et al. (2007) and relates
to a real travel agent process. The aim of the process is to offer
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Fig. 1 Matching EA as problem solution to BPM as problem domain considering reproduction
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holiday proposals to the customers of a travel agency: The
process starts with a customer enquiry containing the relevant
booking information, i.e., the travel details and the price limit.
The travel agent chooses from pre-configured holiday bundles
and tailors a custom proposal simultaneously. On a generic
level, four process activities exist where each activity can be
executed in two alternative forms. The process results in a
holiday proposal and the corresponding payment details.
Figure 2 sketches the design in BPMN notation.

5.3 The representation of the process components

The first and most crucial step in applying EAs to the problem
domain of BPM is the solid translation of processes from real-
world to computational world. According to its definition, a
process or its design respectively is a combination of finite
elements. Following this, process redesign becomes a NP-
hard problemwith a highly constrained and fragmented search
space as well as many local optima (Low et al. 2014). To find
and assess feasible process designs, the algorithm requires not
only information about the elements but also about their char-
acteristics. Therefore, we divide process designs into their
basic elements: activities, connections, and routing decisions.
In order to fulfil design objective O.1, we implement five
matrices: the activity-attribute matrix, the object-attribute
matrix, the activity-input matrix, the activity-output matrix,
and the activity-process-attribute matrix.

The first two matrices describe the attributes of activities
and objects. The activity-attribute matrix is a library of possi-
ble activities available for process redesign. The activities in
the rows (represented by the variable ax) are completely
described by their functions and economic attributes in
the columns. Functions describe activities on a capability
level. Although activities may fulfill the same function within a
process, i.e., they produce the same output, they may carry out
their function differently, e.g., they may vary in the required
objects. Thus, activities fulfilling the same function provide the
same output with different inputs and represent alternatives.
The attributes assign value contributions to activities and are

required for process evaluation in later stages. As typical for
VBM, we describe the efficiency of activities by expected cash

flows μax ¼ E fCFax

h i
and the process risk by the variance of

cash flows σ2
ax ¼ Var fCFax

h i
. Both distribution parameters

may be gathered from historical data or expert estimates.
Table 1 shows the activity list for our travel agent process with
two alternative forms for each activity shown in Fig. 2, e.g., a1
and a2 are alternatives for the activity Browse pre-booked
packages. In contrast to the original process from Vergidis
et al. (2007) who measure the performance of activities by
time and quality, we use the integrative measure of expected
cash flows and added information about the variance. As
Vergidis et al. (2007) did not provide this, we can easily infer
the cash flows as process costs by monetizing execution times.

The objects-attribute matrix lists all objects that could be
used during process execution. In general, most objects are
used or produced by activities. However, there also exist input
that is not produced by process activities (so-called process
input, which is externally provided prior to execution, e.g.,
employees or machines) and output, which is not demanded
by another activity (process output as the result of the com-
plete process execution). In our example, the travel details and
the price limit derived from the customer enquiry represent the
process input, whereas the holiday proposals and the payment
details are the process output. The object-attribute matrix de-
notes objects (represented by the variable ox) in the rows as
process input or output and assigns economic attributes in the
columns (see Table 2). If an object is denoted as process input,
the total cash outflows required for the provision of the object
is the corresponding economic attribute from VBM. If an
object is denoted as process output, the total cash inflows
resulting from selling the output or from internal charges
constitute possible economic attributes. As the process in-
put of the travel agent process is customer information, the
required cash outflows equal zero. For the process output,
the travel agency charges an administration fee. Further objects,
i.e., pre-booked packages and travel options, are necessary to
depict a proper sequence flow. As these objects are neither

Fig. 2 Travel agent process
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process input nor process output, they do not need economic
attributes.

The other matrices describe the relationships of objects and
determine the control flow of the process. The latter allows for
sequential, parallel, and disjunctive executions of activities
(represented by gateways in modeling notations such as
BPMN). The activity-input and activity-outputmatrices repre-
sent the logical connectivity of activities in terms on an input-
output-relationship (e.g., object o1 is output from a1 and input
for a2). They link the activities in the rows with the required
inputs / produced outputs in the columns. This information is
crucial to ensure proper object flows through the process de-
sign. According to process input and output (see object-
attribute matrix), not all objects are both input and output in
the same process design. For the chosen example, Table 3a
and b show the input-output-relationships of activities and
objects for the chosen example and, thus, the different
alternatives for specific inputs or outputs. As a1 and a3
use the same input (i.e., o1 and o2) while creating differing
outputs (i.e., o3 for a1 and o4 for a3), the information in
these matrices already illustrate potential, parallel execu-
tions (e.g., both a1 and a3 could start at the same time
when o1 and o2 are provided as process input). On a
technical level, these matrices implement logical restrictions
to our optimization problem: A process design is only feasible
if the input for each activity has been provided as process or
activity input in advance.

In the case of exclusive splits, routing decisions condi-
tioned to the incoming sequence flow are required regarding
which activity out of many alternatives will be executed. From
a VBM perspective, conditions influence the efficiency and
the risk of the process, making the implementation of execu-
tion probabilities for activities mandatory (Bolsinger et al.
2015). Focusing on data-based conditions, all process attri-
butes known in advance or derived from execution could rep-
resent a differentiating factor. The activity-process-attribute
matrix maps such process attributes (represented by the
variable dx) in the rows to the activities in the columns
to determine under which circumstances the process is
routed over a distinct activity. A process attribute is fur-
ther specified by its decisive values (represented by the
variable vxy ) and the corresponding execution probabilities.

The representation of the execution probabilities and the
decisive values in turn depend on the scale of measurement of
the process attribute. Thematrix lists all possible decisive values
and their execution probabilities. For ordinal and nominal
attributes, the value range and the discrete probability
distributions are entered directly. As interval scaled attributes
result in continuous probability distribution, the matrix divides
the value ranges into intervals and assigns the execution
probabilities accordingly. In order to calculate these execution
probabilities, the expected value and the standard deviation of
the density function are sufficient. The distribution data may be
gathered analogous to the determination of economic attributes

Table 1 Activity-attribute matrix
No. Function μax σ2

ax

a1 Browse pre-booked packages (PBP): Search from brochures -1 0,30

a2 Browse pre-booked packages (PBP): Search company intranet -7 14,82

a3 Explore travel options (TO): Browse past cases -4 4,84

a4 Explore travel options (TO): Explore new options -23 160,02

a5 Check availability: Via intranet/e-mail -29 254,40

a6 Check availability: Via phone/post -20 121,00

a7 Create tailored package: Use specific software -4 4,84

a8 Create tailored package: Combine options manually -25 189,06

Table 2 Object-attribute matrix
No. Description Type Process input Process output Price

o1 Travel details Information Yes No 0

o2 Price limit Information Yes No 0

o3 Pre-booked Packages Information No No 0

o4 Travel options Information No No 0

o5 PBP: Holiday proposals Information No Yes 20,00

o6 PBP: Payment details Information No Yes 25,00

o7 TO: Holiday proposals Information No Yes 20,00

o8 TO: Payment details Information No Yes 25,00
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on the basis of historical data or expert estimates. As Vergidis
et al. (2007) do not consider exclusive splits, we add hotel
category as process attribute for routing decisions for demon-
stration and evaluation purposes (see Table 4). In this case, the
decisive value is the number of stars. Thus, there are five distinct
attribute forms from 1-star-rating to 5-star-rating. As we assume
that the relatively most hotels have a 3-star-rating, this value has
the highest probability (i.e., 50 %). The effect of process attri-
butes on the routing decisions can be shown by activities a7 and
a8. Even though both a7 and a8 are two alternatives for the same
activity Create tailored package (see Table 1) while using the
same input (i.e., o4; see Table 3a) and serving the same output
(i.e., o7 and o8; see Table 3b), they would not be alternatives any
more as both do not cover all required attribute values.

5.4 The representation of the process design

After having structured the required information about the
basic elements of a redesign problem, we now elaborate the
computational representation of a complete process design.
As we pay attention to a communicative human-machine in-
terface, we apply a Polish notation (also called Bprefix
notation^) and a recursive, depth-first representation. In doing
so, the processing of nested lists starts from the left hand side,
similar to functional notations in MS Excel and LISP. The
latter has already proven to serve many optimization problems
(Koza 1992).

Following the object perspective and to ensure proper ob-
ject flows, a process design always begins with the process
input and ends with the process output represented by the
variable PI or PO respectively. In between, the activities ax
and their logical connections describe the sequence flow. As
mentioned above, these connections can have three different
patterns: sequential, parallel and disjunctive. Sequences con-
sist of two activities which have an input-output-relationship.
In terms of programming, we write sequences where activity
ad follows activity ab as an enumeration: ab , ad. In order to
describe a parallel execution of activities, we follow a prefix

notation with resemblance to the AND-function in MS Excel:
AND(ab; ad). Please note that a feasible process design re-
quires input to execute both activities. Otherwise, the design
cannot produce the desired process output. To model an ex-
clusive split and the underlying routing decision about one out
of two activities based on condition cx, we apply the prefix
XOR similar to the if-function in MS Excel: XOR(cx; ab; ad).
The programming of conditions, in turn, requires information
about the distinctive process attribute dx and a decisive value
vcx out of the possible value range from the activity-process-
attribute matrix as well as a relational operator r. Technically,
we use the following notation: cx ¼ dx vcx ; rcxð Þ. To conclude
a process design, we surround it with angle brackets. Table 5
summarizes the basic patterns of connections and activities
our EA application is able to process.

Basically, any combination of those patterns, also nested
combinations, may appear in process designs. Figure 3 pro-
vides such a complete process design based on our modified
example. Starting from the left, PI provides the process input
r1 and r2 for activity a1 as well as activity a4. Activity a8 gets
executed in process instances where the decisive characteristic
Bhotel category^ is 5-star. For the process output, both parallel
sequence flows have to be finished first. The bottom line
shows the corresponding EA notification.

5.5 Customizing an EA

In the following section, we leverage the flexibility of EA
algorithms. Generally, EAs benefit from the exploitative and
explorative character of the underlying selection and repro-
duction mechanisms, making it especially appealing business
problems. In order to tailor EA functionalities to our redesign
problem at hand, we customize the instantiation of the initial
population, apply two kinds of selection and three types of
reproduction mechanisms.

6 The generation of the initial population

As proper initial populations are not biased towards areas in
the problem space and approach the problem space from var-
ious directions, we compose the initial population as combi-
nations of the status quo design and random selections of
activities. The status quo design is the process as it is currently
implemented and serves as a baseline for the best known so-
lution. All other process designs created in an EA run have to
compete with the status quo design as a known feasible and
practicable solution. Random selections create new process
designs by randomly choosing a pre-defined number of activ-
ities from the activity-attribute matrix to enhance the diversity
of the initial population. The size of the initial population and
the following generations need to be set accordingly to the

Table 3 Activities in relation to objects

a) Activity-input matrix B) Activity-output matrix

o1 o2 o3 o4 o3 o4 o5 o6 o7 o8

a1 1 1 0 0 a1 1 0 0 0 0 0

a2 1 1 0 0 a2 1 0 0 0 0 0

a3 1 1 0 0 a3 0 1 0 0 0 0

a4 1 1 0 0 a4 0 1 0 0 0 0

a5 0 0 1 0 a5 0 0 1 1 0 0

a6 0 0 1 0 a6 0 0 1 1 0 0

a7 0 0 0 1 a7 0 0 0 0 1 1

a8 0 0 0 1 a8 0 0 0 0 1 1
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focal process. Thereby, smaller sizes have performance advan-
tages but they more likely returns local optima. In order to
illustrate our concept of initial populations, we depict an ex-
ample for the travel agent process in Table 6. The population
size equals 5 and the number of random activities is set equal
to 4. The latter specification determines the size of the gener-
ated designs.

6.1 Ensuring feasible process designs by a repair
mechanism

Random selections of activities rarely constitute a feasible
process design, where feasibility depends on the design’s abil-
ity to produce the requested process output. As infeasible so-
lutions are less likely to provide material for producing feasi-
ble successors and as infeasible process designs will never be
put into practice, we construct a repair mechanism that ensures
the desired feasibility of the created solutions.

The repair mechanism operates on an activity list, e.g., the
random selection of activities in the case of the initial population.
It proceeds recursively and starts with the process output. If none
of the activities in a design provides the process output, the
repair mechanism randomly selects an activity out of the activ-
ity-attribute matrix that fulfils this requirement. Step by step, it
determines all activities contributing to the production of the
process output by either providing inputs for following activities
in the object flow or by providing the process output. Besides,
feasibility requires the complete coverage of present process

attributes. As activities may only relate to a distinct selection
of process attributes, the repair mechanism repeats these adding
steps until all forms of the attributes can be processed. If a
selected activity cannot get executed due to the missing input,
the repair mechanism equivalently adds an appropriate activity
from the library. Moreover, it erases activities that do not con-
tribute to the production of the process output and finally returns
a list of activities for a feasible process design.

Building on this master list of a feasible design, the repair
mechanism arranges the activities with respect to their input-
output-relationships to a process design following pre-defined
rules: First, a direct input-output-relationship of activities leads
to a sequence. Second, the repair mechanism arranges two or
more activities using the same input and producing different
output in parallel. Third, two or more activities with identical
input-output-relationships but different coverages of process
attributes result in an exclusive split. Thereby, the sequence
flow splits with respect to all relevant process attributes. In
the case of overlapping activity-process-attribute-relationships,
the repair mechanism assigns the feasible activities randomly.
Remaining activities not considered in any part of the sequence
flow are erased as well. By applying this repair mechanism, we
purely focus on feasible solutions and exploit combination pat-
terns. Thereby, we speed up optimization and proactively ex-
cludemanymisleading areas in the problem space. Limiting the
problem space beforehand helps to search the remaining areas
in the problem space more thoroughly and makes it more likely
to determine designs with high performance.

Table 4 Activity-process-
attribute matrix Process attribute Hotel category (d1)

Attribute Form ⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆
Probability 2,5 % 17,5 % 50 % 25 % 5 %

v11 v12 v13 v14 v15

a1 1 1 1 1 1

a2 1 1 1 1 1

a3 1 1 1 1 1

a4 1 1 1 1 1

a5 1 1 1 1 1

a6 1 1 1 1 1

a7 1 1 1 1 0

a8 0 0 0 0 1

Table 5 Basic patterns of activity combinations
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Table 7 demonstrates the stepwise application of the repair
mechanism to the first random selection of the initial popula-
tion in Table 2. For o7 and o8, the repair mechanism adds the
activities a7 and a8 going backwards from process output
since the available activities do not cover all forms of the
attribute Bhotel category .̂ As a1 and a2 or a3 and a4 respec-
tively are mutual alternatives, the repair mechanism imple-
ments exclusive splits with randomly selected decisive values.
Finally, the repair algorithm proceeds with arranging activities
according to the pre-defined rules and creates a feasible design.

6.2 Evaluating the fitness of created process designs

In order to evaluate the potential design candidates, we follow the
paradigm of VBM. More specifically, we propose the valuation
function from Bolsinger (2015). This approach has four benefi-
cial implications. First, it reduces the multi-dimensionality of the
valuation problem for process redesign projects (cf. Limam
Mansar et al. 2009) to a single objective which is increasing
the company’s value. Second, it enables the consideration of
uncertainties about future process performances. Third, it ex-
tends the optimization potential of current approaches by en-
abling the valuation of conditions at decision nodes and inte-
grating them into the optimization. Fourth, the application of
value-based management increases the performance of EAs
and enables its application also for complex processes.

As one of the most accepted valuation functions, VBM
proposes the preference functional ϕ. This function has prov-
en to be applicable for decisions on the operational process
level (Bolsinger 2015). The preference functional fulfills the
central requirements of VBM which are the focus on cash
flows, the consideration of the time value of money and of
the risk attitude of the decision-maker (see design objective
O.3). These requirements are fulfilled by considering three cen-
tral variables: The expected net present value of process cash

flows μNPV ¼ E fCFNPV

h i
as a measure of efficiency and effec-

tiveness, the uncertainty of those cash flows represented by their

expected variance σ2
PV ¼ Var fCFNPV

h i
as a measure of risk and

the risk aversion of the decision-maker α. It is defined as:

ϕ μNPV ;σNPVð Þ ¼ μNPV−
α
2
⋅σ2

NPV ð1Þ

Whereas the risk aversion α is constant across process de-
signs, our EA calculates μNPV and σ2

NPV for each created pro-
cess design according to Eqs. (2) and (3).

μNPV ¼ −I þ
XT

t¼0

nt⋅μp

1þ ið Þ ð2Þ

σ2
NPV ¼

XT

t¼0

nt⋅σ2
p

1þ ið Þ2t ð3Þ

μNPV is defined as the difference between the initial investment
for the implementation of a new process design I and the sum of
the expected cash flows generated at run time. The initial in-
vestment includes a constant amount Ifix for conducting process
redesign and a variable amount Ivar depending on the number of
new activities established. New activities lead to cash outflows
for implementation and staff training among others. Within the
considered time horizon T the process runs n-times in each
period t ∈ T and generates expected periodic cash flows μP.
The periodic cash flows are then discounted by an interest rate

EA notification

Fig. 3 Example process in EA notification

Table 6 Initial Population

< PI;AND a1; a5; a4;XOR d1 v15 ;¼ð Þ; a8; a7ð Þð Þ;PO > (Status quo)

< PI ; a1; a2; a3; a4;PO >

< PI ; a1; a4; a6; a8;PO >

< PI ; a1; a3; a4; a7;PO >

< PI ; a3; a6; a7; a8;PO >
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i to the present day. Similarly, we calculate σ2
NPV as the sum of

the variances for the single process executions σ2
P in period t

within the total planning horizon T and discount with i. General
planning variables like Ifix, Ivar, T, and i need to be set in ad-
vance, they do not change within an EA run and they are in-
variant to the process design.

In contrast, μP and σ2
P are design-specific and depend on

the contained activities ax as well as their probability of ap-
pearance pax . Equations (4) and (5) define the calculation of

the economic decision variables for a process design. While
an activity’s expected cash flow μax as well as its expected

standard deviation σax come directly from activity-attribute
matrix, its probability pax originates from the activity-pro-
cess-attribute-matrix and depends on the gateways that define
the paths along which a process design can be traversed.

μp ¼
XD
d¼1

μad⋅pad ð4Þ

σ2
p ¼ −μ

2

p
þ
XD
d¼1

σ2
a þ μ2

a

� �
⋅pad þ 2⋅

XD−1
dþ1

XD
b¼dþ1

μad ⋅μad⋅p ad; abð Þ

ð5Þ

In our example, applying the repair mechanism to the initial
population leads to five feasible process designs (See Table 8).
The values of the fitness function with I=0, T = 5, i = 2.5%,
n = 100, and α =0.05 are also shown.

6.3 The selection mechanism

Weapply two types of selectionmechanisms: the elitist selection
and the tournament selection. In the elitist selection, a defined
number of currently best known designs gets directly copied to
the next generation without undergoing recombination or muta-
tion. Hence, we can ensure that the best process designs can
traverse to the end. As our completing selection mechanism,
we use tournament selection to balance exploration and

exploitation. Thereby, we implement moderate selection pres-
sure while still allowing for further fine tuning and preventing
premature convergence towards local optima (De Jong 2006). In
tournament selection, a specified number of designs of the cur-
rent population competes with their fitness values ϕ(μNPV, σNPV)
against each other. Thereby, the amount of competitors needs to
be set in advance and remains constant throughout the optimi-
zation run. The higher the amount of competitors, the higher is
the selection pressure and the more likely is premature con-
vergence. In each competition, the design with the highest
fitness value gets chosen as a parent for the next generation.
For the travel agent process, Fig. 4 provides exemplary
tournament selections with the winner marked in bold.

Due to a predefined recombination probability, the winning
competitor is combined with a second parent from a second
tournament selection into an offspring. In this case, the EA
modifies the offspring additionally by the recombination and
mutation mechanisms (see next section). Otherwise, the off-
spring is just a (probably mutated) copy of the winning com-
petitor and not a combination of two designs. After having
produced an offspring design, the parent design returns to its
population and may still be a parent for further offspring. This
customization enables that more than one variation of a prom-
ising design may traverse to the next generation.

6.4 The reproduction mechanisms

When creating new designs, our EA considers three mecha-
nisms: copying, recombination and mutation. The first one,
copying, retains promising process designs from the elitist se-
lection but does not provide further information about the prob-
lem space. It ensures that the best solutions can traverse to the
end. Recombination and mutation introduce new designs and,
hence, help to explore the problem space. Whereas, recombina-
tion supports local search, mutation ensures global search within
the problem space. Therefore, our application builds on selection
mechanisms to seize designs with higher performance, it ex-
ploits recombination for combining promising designs in novel

Table 7 Step by step guide for the repair mechanism

(1) Check Process design for missing output: < PI ; a1; a2; a3; a4;PO >

(2) Add activity that provides o8: < PI ; a1; a2; a3; a4; a8;PO >

(3) Add further activity that provides o8, as existing do not cover all attributes: < PI ; a1; a2; a3; a4; a7; a8;PO >

(4) Add activity that provides o6: < PI ; a1; a2; a3; a4; a5; a7; a8;PO >

(5) Repeat the steps for all other objects: < PI ; a1; a2; a3; a4; a5; a7; a8;PO >

(6) Erase activities that do not contribute to the production of the process output: < PI ; a1; a2; a3; a4; a5; a7; a8;PO >

(7) Arrange activities: < PI ;AND XOR d1 v12 ;¼ð Þ; a1; a2ð Þ; a5;ð
XOR d1 v14 ;¼ð Þ; a3; a4ð Þ;XOR d1 v15 ;¼ð Þ; a8; a7ð ÞÞ;PO >
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ways and mutation for creating new designs. Before innovating
process designs in the latter two reproduction mechanisms, our
algorithm re-translates parent designs into activity lists and ab-
stracts from the structural appearances. Thereby, we can reduce
the bias towards children having the same structures and condi-
tions in their process designs as their parents. As this condensed
interpretation of recombination and mutation does not ensure
that the offspring represent feasible process designs, the activity
lists of the new designs undergo the repair algorithm before re-
translating them into process designs.

For recombination, the parents’ designs randomly exchange
activities resulting in two new designs following a two-point
crossover. With a predetermined probability, the first parent ex-
changes two of its activities for one activity (see ② in Fig. 5).
Otherwise, the parents exchange one activity for another (see①
in Fig. 5). As a consequence, offspring of varying sizes evolve.
For mutation, each activity in the list of the offspring is ex-
changed with a predetermined mutation probability against a
random activity from the library (see③ in Fig. 5). The determi-
nation of the mutation probability is crucial. A higher mutation
probability leads to a higher explorative character of the EA but
makes it also more similar to random search. However, if the
mutation probability is low, premature convergence is likely.

6.5 Summary

The selection and reproduction mechanisms lead to offspring
that, in turn, represent their parents for the next generation of

process designs. This cycle will continue until a termination
criterion is reached. The EA run finishes either by reaching the
maximal number of generations or after a specified number of
generations without a change of the best known design. Then,
the EA returns the best process designs.

In all, EAs allow for a wide range of parameter set-
tings. This flexibility enables the algorithm to cope with
a high number of processes. Process designers may set
the parameters according to the nature of the process at
hand and their goals. Our EA shows a high exploitative
character when dealing with process designs of low
complexity and a higher explorative character when fac-
ing complex optimization problems. Figure 6 summa-
rizes our results and the input parameters presented in
this section.

7 Evaluation

7.1 Validation of the design specification (EVAL2)

In order to evaluate if the design specification of our compu-
tational support for process redesign suitably addresses our
research question, we discuss its key features against the
pre-defined design objectives obtained from justificatory
knowledge. This validation corresponds to the so called fea-
ture comparison, an ex-ante and artificial evaluation method
(Venable et al. 2012).

Fig. 4 Tournament selection examples

Table 8 Fitness values of the Brepaired^ initial population

Process design ϕ(μNPV, σNPV)

< PI ;AND a1; a5; a4;XOR d1 v15 ;¼ð Þ; a8; a7ð Þð Þ ;PO >
9984.12

< PI ;AND XOR d1 v12 ;¼ð Þ; a1; a2ð Þ; a5;XOR d1 v14 ;¼ð Þ; a3; a4ð Þ;XOR d1 v15 ;¼ð Þ; a8; a7ð Þð Þ ;PO >
9420.80

< PI ;AND a1; a6; a4;XOR d1 v15 ;¼ð Þ; a8; a7ð Þð Þ ;PO >
15,606.79

< PI ;AND a1; a5;XOR d1 v13 ;¼ð Þ; a4; a3ð Þ;XOR d1 v15 ;¼ð Þ; a8; a7ð Þð Þ ;PO >
14,260.88

< PI ;AND a2; a6; a3;XOR d1 v15 ;¼ð Þ; a8; a7ð Þð Þ ;PO >
23,166.22
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From a stand-alone perspective, our EA application ad-
dresses all design objectives. Table 9 illustrates details.
Nevertheless, future research may improve our application
with respect to some design objectives. For example, the ap-
plication only considers the focal process from a stand-alone
perspective and abstracts from interdependencies to other pro-
cesses within the organization. An extension to a process port-
folio consideration could be realized by including interdepen-
dencies in the activity-attribute matrix. The valuation function
could then consider correlations in the variance term (O.2).
Although our application computationally implements the
BPM lifecycle as the most popular redesign paradigm in prac-
tice and thereby probably achieves a high acceptance among
practitioners, it still remains a data-based and computational
approach. A data-driven attitude and a kind of confidence into
computational applications among the target users is key.

Therefore, future research should investigate how our EA
can be combined with more intuitive approaches like the cre-
ative redesign process (Limam Mansar et al. 2009) to further
foster organizational acceptance (O.3).

7.2 Prototype construction and validation (EVAL3)

Aiming at validated artefact instantiations, we built and tested
a simulation-based software prototype to provide a proof of
concept. The basis of our prototype is MS Excel as it already
provides basic input/output and analysis functionalities. We
implemented the computational logic using VBA enabling
our prototype for further applications in naturalistic settings.
For computing purposes, we use a more application-friendly
notation (e.g., A01A for a1, D01D for d1) compared to the
formal EA notation.

Reproduction

• Copying

• Recombination

• Probability of choosing a 

second activity for exchange

• Mutation

Solution

• Evaluation

• Planning horizon (T)

• Process runs per period (n)

• Initial Investments (Ifix & Ivar)

• Interest rate per period (i)

Selection

• Elitist selection

• Number of elitist solutions

• Tournament selection

• Number of competitors

• Recombination probability

Population

• Populations

• Population size

• Initial Population

• Status Quo

Termination

• Number of generations

• Number of generations

without any changes in the

best solution

Fig. 6 Input parameter for EA
application

Fig. 5 Recombination and mutation examples
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Using the prototype requires several steps. First, activities,
objects, and conditions need to be defined. Second, relevant
information about these elements need to be gathered to fill
the five matrices: the activity-attribute matrix, the object-at-
tribute matrix, the activity-input matrix, the activity-output
matrix and the activity-process-attribute matrix. Third, gener-
al planning variables (e.g., planning horizon, interest rate, risk
aversion) and technical EA parameters (e.g., population size,
number of generations, recombination probability) need to be
set. All information can be easily accessed via input spread-
sheets. Several output spreadsheets summarize the results of
the EA run, and provide analytic functionalities.While the EA
summary sheet (Fig. 7) only lists performance information
and highlights the best designs, the evaluation sheet (Fig. 8)
graphically presents the development of the fitness value over
generations and provides further statistics about the simulated
designs as well as the included activities.

7.3 Demonstration and performance evaluation

In order to demonstrate the applicability and usefulness of our
EA application, we follow a two-step evaluation. First, we
apply our EA on our running example of the travel agent

process (scenario A) which is based on a modified real-life sce-
nario from Vergidis et al. (2007) to comprehensively test the
correctness of our application. Second, we apply a more com-
plex artificial setting (scenario B) to conduct further analyses.

To represent the travel agent process in the five matrices of
our application, we needed to translate the performance mea-
surement in terms of quality and time to the scale of VBM. In
doing so, we used a different representation of in−/output and
added information for routing decisions. Overall, the example
contains eight activities where three activities have two alter-
natives each and where an exclusive split between activities a7
and a8 with respect to the chosen hotel category is mandatory.
The process output consists of two objects created by two
different activity sequences. Therefore, the scenario covers
sequence, concurrency, and exclusive split while being simple
enough to determine the optimal process design manually for
comprehensively testing the correctness of the algorithm.

The EA found the best design, i.e., < PI ;AND a1; a6; a3;ð
XOR d1 v15 ;¼ð Þ; a8; a7ð ÞÞ, 44 times out of 50 independent op-
timization runs within the first 10 generations with 10 individ-
ual designs each. Activities a1, a3, and a6 are included approx-
imately twice as often as compared to their lower performing
alternatives a2, a4, and a5. Activities a7 and a8 are part of every

Table 9 Results of feature comparison

Design Objectives Characteristics of our CI applications

Summary Our algorithm supports the development of new designs that better fit restrictions of a process. It analyzes process
information represented in compiled matrices, it recombines and incrementally changes activities. Finally, it
prioritizes new designs with respect to their promised value contributions. Thereby, the algorithm turns the
intuitive and subjective approach of Bhuman-based^ redesign initiatives to the unbiased, computational level.

(O.1) Process Elements Our application considers with sequential, parallel and disjunctive connections the most relevant elements from
BPM. With the consideration of conditions, we can identify better designs according to process or
environmental characteristics. Further, our application incrementally changes processes by a stepwise
recombination of activities and connections towards a clearly prioritized set of promising designs.

(O.2) Value-based Management Our algorithm uses a fitness function that stems from VBM and covers cash flows, the time value of money and the
risk attitude of decision-makers. The long term perspective of VBM enables us to reduce the multiple dimensions
of process performance to the main economic factors of cash inflows, cash outflows and cash flow risk.

(O.3) Evolutionary Redesign Our algorithm is a computational implementation of the BPM lifecycle which is the most accepted redesign approach
in the practical, offline world. Additionally, it deals with the most familiar design elements. The low run-time and
the ability to address very complex processes further foster acceptance among practical decision-makers.

Fig. 7 EA summary spreadsheet
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solution. Due to the repair mechanism, all designs include five
activities. Based on these findings, we can make several con-
clusions about the EA’s behavior: First, the EA chooses the
best alternatives if two or more activities fulfill the same func-
tions. Second, the EA integrates conditions and exclusive
splits where necessary. Third, by copying evolutionary behav-
ior and by showing a robust performance in finding optimized
designs, our EA confirms its ability as a promising tool for
process redesign.

To test the EA in a more complex setting, scenario B rep-
resents challenges faced by process manager in real-world
BPM problems. Accounting for a multiplicity in design op-
tions, this scenario offers different ways of transferring pro-
cess input into process output as schematic shown in Fig. 9.
The EA needs to combine up to nine activities according to
their input-output-relationships and choose among many al-
ternative activities (represented by the numbers attached to the
activities). The alternatives vary according to their expected
cash flows and uncertainty in realizing those cash flows as
well as in their fit to the process attributes. The values of the
economic attributes depend on the activity’s function, the
activity’s number of sub-steps and the usage of objects and

resources. Overall, the activity-attribute matrix contains 44
activities. Some alternatives integrate multiple sub-steps into
an aggregated activity and exploit economies of scope (e.g., a6
compared to the activity set a3, a4, and a5). They are accord-
ingly characterized by a higher efficiency (smaller expected
cash outflows) compared to the sequence of the disaggregated
alternatives. On the other hand, disaggregation makes the en-
tire element easier to control and thus is exposed to lower risk
than the aggregated activities. As a result, the EA also faces
the trade-off between efficiency and risk. Other alternatives
follow equal input-output-relationships regarding two process
attributes (i.e., all activities summarized by a1X and a2X) to
implement routing conditions at different stages of the process
design. The matching of activities to the decisive forms of the
process attributes results in exclusive splits just as overlapping
activity-process-attribute-relationships. Summing all up, the
EA faces a non-trivial problem of finding an optimal combi-
nation of activities, alternatives and routing decisions.

In 25 independent runs of 80 generations with 50 individ-
ual designs each, our EA returned the identical optimal design
in more than 65 % of all cases. This design dominates all
created designs as measured by the value function. Figure 10

Fig. 8 Evaluation spreadsheet

Fig. 9 Schematic representation of scenario B
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provides further insights: The average fitness of progressing
generations confirms the EA’s exploitative character. After a
high increase of the fitness at the beginning, the EA differs
slightly in the designs to approach the optimal solution. This is
confirmed by the distribution of the design sizes whose wide
variety also illustrates the EA’s explorative character. In order
to find the optimized designs, the EA produced designs of six
different sizes but favored designs with 10 activities. As a
result of the repair mechanism, all designs include more than
eight activities. The EA found the optimal design for the first
time in the 30th generation.

7.4 Discussion against evaluation criteria

Further validating our prototype, we also discuss its application
against typical criteria for EVAL3 as compiled and assessed by
Sonnenberg and vom Brocke (2012). Summarizing, this dis-
cussion indicates that the application and the prototype address
all criteria. As key findings, we can state that our approach
provides an effective and efficient tool for process redesign.
It builds on accessible information just as well-known repre-
sentations and techniques. On the other hand, it becomes evi-
dent that applicability of our customized EA for naturalistic
settings requires additional developments. Detailed results are
shown in Table 10.

8 Conclusion, limitations and outlook

This paper addressed the problem how CI can support the
redesign of processes. In practice, this key task of BPM often
relies on human intuition and lacks the support of computa-
tional support. As a solution to this research gap, we devel-
oped an EA that incrementally improves the status quo design
promising an objective basis for further discussions in a rede-
sign committee. Following the BPM lifecycle and integrating

VBM for prioritization as practice-proven and acknowledged
concepts in process decision-making, our algorithm should
face a high acceptance among process decision-makers as its
target users. Overall, our EA unites concepts from IS research,
management sciences and BPM and thereby bundles the
strengths of these diverse research areas to holistically address
the interdisciplinary issue of process redesign.

The main challenge in applying CI (in general) or EAs (in
particular) for process redesign is the translation of process
designs into the computational world. To compile the avail-
able process information, we describe activities, objects, and
their logical connections as the key elements of process de-
signs in matrices. Moreover, our algorithm is the first EA
application that allows exclusive splits considering conditions
based on process attributes as a further key element of pro-
cesses. As a result, our EA application can develop more
realistic process designs and enable a better re-translation. In
order to bridge the trade-off between maintaining promising
designs and searching for new solutions, the EA constructs
new designs either randomly when creating the initial popu-
lation or by following recombination and mutation. A repair
mechanism ensures logical correctness and transforms infea-
sible designs, which do not produce the desired process out-
put, into feasible designs. These feasible designs are evaluated
by a valuation function from VBM and the most valuable
designs form the baseline for the next generation. As a result,
our algorithm can deal with complex processes in terms of a
high number of activities, it provides promising design candi-
dates in an acceptable time and it provides a clear prioritiza-
tion of designs instead of a set of not-dominated designs. The
entire process mimics the cognitive approach of human
decision-makers but avoids the disadvantages of subjective
vagueness and personal biases. It invests the strengths of CI
to a real-world problem whose complexity exceeds the cogni-
tive capacity of human beings. In other words, it constitutes a
reasonable application field of human-computer interaction.
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We evaluated our EA application in line with Sonnenberg
and vom Brocke’s (2012) framework. In this paper, we report-
ed on the results of feature comparison, prototype construc-
tion, and demonstration examples to fulfil the requirements of
the evaluation activities EVAL1 to EVAL3. As the validation
revealed challenges and as our approach is beset with limita-
tions, further research is necessary. In particular, our EA will
benefit from further evaluations in real-world case studies
such as recommended by evaluation activity EVAL4, where
the EA and the prototype are applied in naturalistic settings.
Thereby, the usefulness for organizational stakeholders in-
volved in process redesigns could be answered in detail.
Besides further evaluation, the current software prototype

should also be extended towards more sophisticated visuali-
zation and analysis functionality. Thereby, it could be devel-
oped to a scalable, platform- and vendor-independent applica-
tion with well-defined interfaces for data in−/output that con-
nect to existing BPM systems. From a conceptual perspective,
the growing interdependencies of processes in todays global-
ized times resulting in network structures necessitate adjust-
ments to the value function. In combination with the integra-
tion of further missing process design elements (e.g., events),
complexity will increase owing to this broader interpretation
imposing run time and performance problems, which should
also be addressed. Further research could also draw from the
results of multi-criteria decision-making to enable a direct

Table 10 Discussion of usefulness

Criterion Characteristics of the CI application and the software prototype

Feasibility The prototypical implementation and the artificial cases (scenarios A and B) illustrate that the proposed EA
application is feasible for simple as well as for complex scenarios. The applied computational intelligence
provides support for process redesignwhere other methods andmechanisms reach their limits, especially in
cases of many alternative design options. Generalizing the results from our two scenarios, we can state that
the EA is basically applicable to all classes of processes, but it best fits mature processes. The EA operates
on diverse matrices as atomic representation of design opportunities. Accordingly, organizations need
fine-grained process knowledge to apply the EA. For immature processes or young organizations, such a
deep process experience could not yet have been made and filling out the process matrices is more like a
blind guess. For this class of process, the unstructured redesign method as described by Limam Mansar
et al. (2009) promises better results as human intuition and brainstorming methods are exploited to identify
new process designs.

Ease of Use & Operationality As we could not test our application in a real-world setting, we can only argumentatively evaluate its ease of
use and operationality based on the insights we gained in the artificial environment. The EA application
builds on information about activities, objects, and conditions which is already used in today’s redesign
initiatives. As currently conducted, the required data could be collected in automated environments by
using process mining techniques. Besides, it should be possible to gather the data in non-automated
environments by experts as well. The matrices for recording the data are straight forward to use as they are
based on proven technologies. This argument also holds for the translation of the process designs into the
computational world which we faced as greatest challenge.

However, a graphical representationwould assist a better understanding. As the EA should be applied repeatedly,
a knowledge base should be built to institutionalize data collection routines and collect best practices.

Effectiveness, Suitability & Efficiency The EA application can be effectively used to redesign processes. This is confirmed by the simple scenario A,
whichwe used for plausibility checks. The fitness function aswell as the repair mechanism demonstrated to
ensure feasible designs. The mix of local and global search is free of subjective vagueness and uncertainty.

For efficiency, we conducted performance tests with the prototype on regular work stations such as used in
business environments. The EA is also highly performant in settings of various activities, objects, and
conditions as well as a high amount of individual designs per generation. The optimal designs were found
within a limited number of generations. In any case, the total time including recording data and applying the
EAwill not exceed the usual redesign time. However, simulation performance dropped from scenario A to
scenario B indicating weaknesses towards the prototype’s scalability.

Fidelity with real-world phenomenon Our EA application already considers many design elements and therefore it can handle many different
constellations that may occur in naturalistic settings. In particular, our inclusion of process and case
characteristics as well as the ability to integrate activities and objects with different levels of detail into our
computational solution provides more possibilities and flexibility towards the process design. The analogy
to the BPM lifecycle allows for a minimal invasive support for process redesign. However, our application
still does not consider all design elements of processes. For example, events that may occur during process
execution and the corresponding waiting times are not implemented yet.

Robustness Based on the evaluation scenarios, the EA application provides robust solutions for process redesign. In
scenario A, the EA found the optimal design in all runs. In scenario B, the EA identified the same design in
most instances and shows only minor deviances in the other cases, despite the risk of local optima.
However, the further development should consider additional robustness checks that also cope with
estimations inaccuracies, which are inevitable in naturalistic settings.

1118 Inf Syst Front (2017) 19:1101–1121



www.manaraa.com

integration of other performance effects like time, quality and
flexibility which we only considered implicitly.

Finally, our long-term research vision is to stepwise extend
our current application until finally reaching the idealistic state
of a fully computer-based BPM lifecycle. Looking at current
developments regarding digitalization and big data, EAs will
become even more powerful in the future. The exponential
growth of available process information, e.g., gathered by
WFMS, increases the potential of computational redesign as
CI will get an increasing advantage over human intelligence.
The cognitive capacity will become more and more deficient
for the complexity of the redesign problem. To complete this
outlook, the promising new designs identified by our EA
could brought in a WFMS. The system could then automati-
cally check its real-life performance and retransfer the gath-
ered insights to the EA. Thereby, all relevant BPM activities
from identifying, measuring, redesigning, and monitoring
could benefit from CI in an automated cycle of improvement.
Until then, our approach advances the computational tool-kit
for process redesign by fusing CI, BPM and VBM to a com-
plete application which addresses drawbacks from existing
works.
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